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Abstract Among the major limitations for cultivating

biomass sorghum in temperate regions is low temperature in

spring that results in low and non-uniform emergence. The

adaptation of sorghum to tropical and subtropical highlands

gives hint of genetic variation in cold tolerance during

emergence. The objective of the present study was to detect

marker–trait associations for parameters describing the

emergence process under different temperature regimes.

A diversity set comprising 194 genotypes was tested in nine

controlled environments with temperatures ranging from 9.4

to 19.9 �C. The genotypes were fingerprinted with 171 DArT

markers. A piecewise linear regression model carried out on

cumulative emergence was used to estimate genotype mean

performance across environments and to carry out stability

analysis on the parameters of the regression model.

Base temperature (Tb) and thermal time required for emer-

gence (ETS) were determined based on median time to

emergence data. Identified QTL positions were compared to

marker–trait associations for final emergence percentages

under low (FEPcold) and normal (FEPnormal) temperatures.

QTL for mean final emergence percentage (FEP), FEPcold and

FEPnormal, Tb and ETS were detected on SBI-01. Other

QTL-rich regions were located on SBI-03, SBI-04, SBI-06,

SBI-08, and SBI-09. Marker–trait associations for Tb and ETS

co-localized to QTL for the across environment stability of

FEP and the median time to emergence or emergence rate,

respectively. We conclude that genome regions on six chro-

mosomes highly influencing cold tolerance during emergence

are promising for regional association studies and for the

development of stable markers for marker-assisted selection.

Introduction

Developing cold tolerant biomass sorghum genotypes is an

important breeding goal in order to have an alternative crop

to maize, which presently dominates the area cultivated for

methane production in Central Europe. Sorghum is a

thermophilic crop, mainly grown in the semi-arid tropics

and subtropics. Low soil temperature in spring may delay

planting time or result in low and non-uniform emergence.

Planting is recommended when stable seedbed tempera-

tures of more than 10 �C are achieved (Anda and Pinter

1994; Brar and Stewart 1994).

Agronomists and plant physiologists used different

approaches to describe germination and emergence: final

germination or emergence rate (Tiryaki and Buyukcingil

2009), germination indices (Afzal et al. 2008) and time to

onset (T1), end (T100) and median time to emergence (T50)

or germination derived from functions describing the
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30419 Hannover, Germany

e-mail: fiedler@gem.uni-hannover.de

W. A. Bekele � W. Friedt � R. Snowdon

Department of Plant Breeding, Justus-Liebig-University Giessen,

Heinrich-Buff Ring 26-32, 35392 Giessen, Germany

A. Zacharias

KWS Saat AG, Grimsehlstr. 31, 37555 Einbeck, Germany

Present Address:
R. Uptmoor

Department of Agronomy, University of Rostock,

Justus-von-Liebig-Weg 6, 18059 Rostock, Germany

123

Theor Appl Genet (2012) 125:1647–1661

DOI 10.1007/s00122-012-1941-4

http://dx.doi.org/10.1007/s00122-012-1941-4


germination process regressed against time (Snapp et al.

2008). Several single-value germination indices, e.g.

Kotowski’s coefficient of velocity (Kotowski 1926) or

Timson’s cumulative germination index (Timson 1965) are

widely used but final values cannot be traced back to direct

measures for T1, emergence rate (ER) and time span of

emergence (T100 - T1), which describe the germination or

emergence process (Brown and Mayer 1988a). The emer-

gence process is important since both final percentage of

emergence and the time, when emergence occurs, are

temperature dependant, and good field emergence requires

high rates of uniformly germinating seeds under both

optimum and low temperature conditions (Kanemasu et al.

1975). Logistic regressions carried out on cumulative

germination rates are commonly used to describe germi-

nation (Hsu et al. 1984; Schimpf et al. 1977). Several

functions describing the germination process were com-

pared by Brown and Mayer (1988b) who recommended the

Weibull function (Weibull 1951). However, comparability

of germination curves computed from data of different

temperature regimes is limited (Dumur et al. 1990). The

Weibull function for instance has a parameter describing

the shape of the regression, which has an effect on the rate

of increase of germination but no biological meaning. An

alternative approach is the use of piecewise linear regres-

sion models (Kempenaar and Schnieders 1995). The

advantages are (1) the possibility to directly compare

model parameters from different datasets since parameters

are not interrelated, i.e., the change of one model parameter

does not necessarily lead to a change of a second param-

eter and (2) model parameters describe physiological

processes or are simple statistical measures.

Genotypic differences in temperature response and base

temperatures ranging from 5.9 to 9.8 �C were reported for

germination of 16 sorghum cultivars (Wade et al. 1993). Genetic

variation in base temperature and emergence rates at low tem-

peratures was assumed to be the result of adaptation processes

(Tiryaki and Andrews 2002). Chinese landraces had higher

germination percentages and shorter time to 50 % germination

at low temperatures than US breeding lines (Franks et al. 2006).

Quantitative trait loci (QTL) analysis for cold tolerance is

a useful tool and a first step towards marker-assisted selec-

tion of cold tolerant genotypes (Knoll and Ejeta 2008). QTLs

for germination rate were found in rice (Ji et al. 2009), wild

barley (Vanhala and Stam 2006) and sorghum (Burow et al.

2011; Knoll et al. 2008). Knoll et al. (2008) identified QTL

for field emergence in sorghum recombinant inbred lines

(RIL) developed from a cross between a caudatum of African

origin and the cold tolerant Chinese kaoliang ‘Shan Qui Red’

on chromosome SBI-01. Cold tolerance QTL were detected

in the same region of SBI-01 by Burow et al. (2011).

For identifying QTL for adaptation processes, multi-envi-

ronment trials are needed. Lacaze et al. (2009) carried out QTL

analysis in a bi-parental barley population on the slope of

individual genotype trait values regressed against the popula-

tion mean in different environments. Kraakman et al. (2004)

used a set of modern spring barley cultivars in order to detect

marker–trait associations for mean yield and yield stability

across environments. El Soda et al. (2010) used stability

parameters to detect QTL for drought tolerance in wild bar-

ley introgression lines. It has been suggested that stability

parameters can be used to distinguish between loci, in which

constitutive genes are directly influenced by the environment

and loci distinct from the constitutive genes but regulating

them.

In contrast to QTL mapping in bi-parental crosses, associ-

ation studies can be carried out on structured and unstructured

populations, potentially carrying more than two alleles on a

certain locus (Flint-Garcia et al. 2003). Advantages of associ-

ation studies are that time consuming and expensive develop-

ment of bi-parental crosses is not needed and a wider gene pool

can be analyzed (Neumann et al. 2010). Genome-wide asso-

ciation studies were carried out, e.g., on traits like days to

heading, culm diameter, leaf length and width in sorghum

using SSR markers (Shehzad et al. 2009). Association mapping

with Diversity Array Technology markers (DArT) was repor-

ted for barley (Pswarayi et al. 2008) and wheat (Crossa et al.

2007). The disadvantages are that DArT markers are bi-allelic

and dominant and are based on unknown sequences (Mace

et al. 2008). However, compared to SSRs, DArT markers allow

a cost efficient and fast genome-wide genotyping.

The objective of the present study was to detect marker–

trait associations for emergence across different temperature

regimes in sorghum. The process of emergence in the different

temperature regimes was described by cumulative emergence

percentages (CEP) over time in order to derive traits like FEP,

T100 - T1 and ER from piecewise linear regressions carried

out on CEP. Since superior genotypes show high emergence

percentages in a wide range of environments while emergence

takes place shortly after sowing and all plants emerge nearly at

the same time, the parameters FEP, ER, T1, T50, T100 and

T100 - T1 are relevant. To evaluate the temperature effect on

emergence, across environment means (M) and Finlay–

Wilkinson slopes (FW) (Finlay and Wilkinson 1963) were

estimated. FEP was computed separately for low and normal

temperatures and base temperature (Tb) and thermal time

(ETS) were calculated based on T50 data. Genome-wide

association studies were carried out on these parameters.

Materials and methods

Plant material

The study was carried out on a diverse set of genotypes

comprising 194 biomass sorghum lines. The set includes
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Sorghum bicolor and S. bicolor sudanense genotypes.

DNA was extracted from leaf tips using the cetyl trime-

thylammonium bromide (CTAB) method. The genotypes

were fingerprinted with 688 polymorphic DArT markers.

Marker positions were taken from Mace et al. (2008).

Unmapped markers and completely linked markers were

excluded from the study and further 115 markers with

frequencies \5 % of the rare allele were also removed.

Association studies were carried out using the remaining

171 polymorphic DArTs.

Experimental design and data collection

The experiment was conducted in growth chambers set to

nine temperature regimes ranging from 9.4 to 19.9 �C.

Overall mean, mean night and day air and soil temperatures

are shown in Table 1. A mean temperature of 9.4 �C was

used as lowest temperature treatment since pretests on a

population subset revealed that the base temperature of

emergence is expected to be higher than 8 �C and lower

than 11 �C for most of the lines. Air and soil temperature

was measured every 5 min directly above the trays and at

10 mm depth using TinyTag View 2 data loggers (Gemini

Data Loggers Ltd., West Sussex, UK) during the entire

duration of the study.

Individual temperature regimes were arranged as ran-

domized complete block designs with two replications.

Light was applied for 12 h with 10 h full light and 2 h

twilight. The genotypes were sown in trays filled with

50 % Klasmann Potgrond P (Klasmann-Deilmann, Groß-

Hesepe, Germany) and 50 % loamy humic sand. A total of

18 seeds per line, treatment and replication were sown at

10 mm depth.

The number of emerged seeds was counted daily until

no further seeds emerged. A plant was defined as emerged

if the coleoptile was visible. Cumulative emergence

percentage (CEP) for each day was calculated using the

following equation:

CEP ¼ RNESi=18� 100 ð1Þ

where NESi is the number of seeds emerged on day i and

18 is the total number of seeds. Mean CEPs of the two

replications were calculated and used for parameter

estimation.

Data analysis

A piecewise linear regression was fitted to cumulative

emergence percentages (Fig. 1) in order to derive the

parameters onset of emergence (T1), median time to

emergence (T50), emergence rate (ER) and end of emer-

gence (T100) using SAS 9.1 (SAS Institute Inc., Cary, NC,

USA). The equation used was:

CEP ¼ 0 t� T

CEP ¼ ER t � T1ð Þ T1\t\T100

CEP ¼ ER T100 � T1ð Þ t� T100;

ð2Þ

where t is the actual number of days from sowing (DAS).

CEP equals to final emergence percentage (FEP) if

t C T100. The regression slope between T1 and T100 is the

estimator for the daily emergence rate (ER). T50 was

estimated as follows:

T50 ¼ T1 þ 0:5 FEP=ER: ð3Þ
Time span of emergence or uniformity of emergence

was defined as T100 - T1. For comparing the genotypes

over a series of environments, stability analysis was carried

out according to Finlay and Wilkinson (1963). Genotype

performance across environments was estimated by

regressing individual genotypes against the population

mean:

Yij ¼ lþ biej þ gi ð4Þ

where l is the overall population mean, bi is the linear

regression coefficient for the ith genotype, ej is the effect of

the jth environment and gi is the effect of the ith genotype.

Data was subjected to analysis of covariance using

the following model for i ¼ 1; 2; 3; . . .; k genotypes and

j ¼ 1; 2; 3; . . .; n environments:

Yij ¼ lþ si þ bxij þ cixij þ eij ð5Þ

where li = l ? si is the intercept of the ith genotype,

FWi = bxij ? cixij is the slope of the genotype perfor-

mance of genotype i in nine environments regressed

against the population means of the environments (Finlay

and Wilkinson 1963) and eij is the random error of the ith

Table 1 Average daily mean, night and day air and mean soil

temperatures in the nine temperature treatments

Environment Air temperature

mean (night/day) (�C)

Soil temperature

mean (�C)

1 9.4 (8.3/10.2) 10.0

2 10.3 (9.2/11.0) 10.3

3 10.7 (9.8/11.4) 10.7

4 10.8 (9.6/11.6) 11.0

5 11.6 (10.4/12.2) 11.6

6 12.3 (11.7/12.8) 12.5

7 16.7 (11.2/24.0) –a

8 17.2 (10.0/26.0) –

9 19.9 (15.4/25.7) –

Cold conditionsb 10.3

Normal conditionsc 17.9

a Soil temperature was not measured in treatments 7–9
b Mean over environment 1–4
c Mean over environment 7–9
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genotype in the jth environment. Analysis of covariance

was carried out on the parameters T1; T50; T100; T100 � T1,

ER and on FEP. FEP was arcsine-square root transformed

prior to carrying out analysis of covariance.

Mean final emergence percentage over environments 1, 2,

3, and 4 was considered as FEP under low temperature con-

ditions (FEPcold) while FEP of environments 7, 8, and 9 was

averaged to define FEP under normal conditions (FEPnormal).

Two factorial analysis of variance (proc GLM SAS 9.1) was

carried out on arcsine-square root transformed data consid-

ering FEPcold and FEPnormal as two treatments with the indi-

vidual temperature regimes as 4 or 3 replications.

Linear regression analysis was carried out on develop-

mental rates (1/T50) of the 9 temperature regimes. Base

temperature (Tb) was estimated by linear extrapolation to

define the temperature at which the development rate

becomes 0:

Tbi ¼ �b0i=bi: ð6Þ

where bi is the regression slope and b0i is the y-axis

intercept of the ith genotype. The temperature sum required

for emergence (ETS) was defined as 1/bi.

Pearson’s correlation coefficients were calculated

between parameters and across environment means of

traits. Variance components were assessed using restricted

maximum likelihood (REML) estimates (proc MIXED,

SAS 9.1). Broad sense heritability (h2) was calculated

according to Hill et al. (1998):

h2 ¼ r2
G

r2
G þ r2

G�E
1
nþ r2 1

n

ð7Þ

where r2
G is the genotypic variance, r2

G�E is the geno-

type 9 environment interaction variance, r2 is the error

variance, and n is the number of environments.

The population structure of 194 individuals was deter-

mined using the software package STRUCTURE assuming

an admixture model (Pritchard et al. 2000). We used a

burn-in phase of 10,000 iterations followed by 10,000

Markov chain Monte Carlo iterations in order to detect the

‘‘true’’ number of K groups in the range of K = 1–20

possible groups. dK was calculated according to Evanno

et al. (2005). The cluster analysis was carried out with

TASSEL 2.01 using the neighbor-joining method.

Linkage disequilibrium (LD) parameters were estimated

by using the software TASSEL 2.01 (Bradbury et al. 2007).

The p values of pairwise LD were computed using 1,000

permutations. LD was calculated for all pairs of loci. The

critical R2 for unlinked loci was estimated after square root

transformation of the R2 values (Breseghello and Sorrells

2006). The 95 % percentile of this distribution is the

threshold beyond which LD was likely to be caused by

genetic linkage. A second-degree LOESS curve was plot-

ted through the R2 data and the point of intersection with

the threshold value was used as the genome-wide estimate

of LD among loci (Breseghello and Sorrells 2006).

TASSEL 2.01 (Bradbury et al. 2007) was used for

identifying significant associations between the 171

markers and a total of 16 traits. The data were subjected to

both a general linear model (GLM) and a mixed linear

model (MLM) (Zhang et al. 2010). The Q-matrix, which

shows the probability that a genotype belongs to a sub-

population, was estimated with STRUCTURE and used

in both models. A kinship matrix was computed with

TASSEL 2.01 and used in MLM. An F test with 1,000

permutations was carried out in order to adjust p values of

GLM (Churchill and Doerge 1994).

For verification of significant marker–trait associations,

the population was divided into two subpopulations at each

relevant locus according to the allelic state of the indi-

viduals and pairwise t tests (p \ 0.05) were performed in

order to test if the marker genotypes differ significantly for

the respective trait.

Fig. 1 Piecewise linear

regression for calculating onset

(T1) and end (T100) of

emergence, uniformity

(T100 - T1), emergence rate

(ER) (regression slope) and the

median of emergence time (T50)

(a) and T1, T100, T100 - T1, T50

and FEP of the population mean

in nine temperature

treatments (b)
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Results

Figure 1b shows that FEP increased with increasing tem-

perature. FEP of the population mean was 95.7 % at

19.9 �C but less than 80 % if air temperature was below

10.8 �C. Lowest FEP was 35.8 % at 9.4 �C. Mean FEPcold

was 61.6 % and ranged between 12.5 and 93.1 % while

mean FEPnormal was 93.3 % (Table 2).

T100 - T1 decreased with increasing temperatures and

both onset and end of emergence occurred earlier at higher

temperatures. Mean T100 - T1 was 8.1 days across all

temperature regimes (Table 2). Emergence started on

average 10.2 DAS and ended 18.3 DAS. The population

mean of ER averaged over environments was 15.4 %

days-1 and ranged between 6 % days-1 at 9.4 �C and

27 % days-1 at 19.9 �C. T50 of the population mean was

achieved 18.5 DAS at 9.4 �C and 11 DAS at 19.9 �C. Tb

ranged from 5.1 to 8.7 �C, mean ETS was 54.2 �C day and

ranged between 41.6 and 93.3 �C day.

Analysis of covariance revealed that both the genotype

and the genotype 9 environment interaction (GEI) effect

were significant for all analyzed traits (Table 3). Genotype

effects were highly significant for FEP, T1, T50 and ER

(p \ 0.001) but also significant for T100 (p \ 0.05) and

T100 - T1 (p \ 0.01). Estimated h2 was highest for FEP

(0.92) (Table 4). For all other traits h2 ranged between 0.73

and 0.86. Analysis of variance for FEPcold and FEPnormal

revealed that genotype and temperature effects were sig-

nificant while genotype 9 temperature interaction effect

was not statistically significant (p = 0.07) (Table 5).

Results of FEPcold and FEPnormal, stability analysis for

FEP, T1, T50, T100, ER, and T100 - T1 as well as Tb and ETS

are shown in Fig. 2. For FEP (b) and ER (g), a high

genotype mean and a small FW illustrates the superiority of

a genotype. A small genotype mean and FW is desirable

for the traits T1 (c), T50 (d), T100 (e) and T100 - T1 (f).

Ranges of FW are shown in Table 2. Highest variation of

Table 2 Genotype mean, minimum and maximum across all nine

environments and the mean, minimum, maximum and average R2 of

Finlay–Wilkinson slopes for the parameters final emergence rate

(FEP), emergence rate (ER), onset (T1) and end (T100) of emergence,

the median of emergence time (T50) and uniformity (T100 - T1).

Genotype mean, minimum, and maximum for FEP under cold and

normal conditions, base temperature (Tb) and thermal time (ETS)

Genotype Average R2

Mean Max Min

FEP (%)

Cold 61.6 93.1 12.5

Normal 93.3 100 60.2

MW 77.0 95.7 35.8

FW 1 1.8 -0.06 0.80

ER (% days-1)

MW 15.4 27 6.0

FW 1 2.4 0.3 0.78

T1 (DAS)

MW 10.2 13.6 7.7

FW 1 1.5 0.6 0.95

T50 (DAS)

MW 14.3 18.5 11.0

FW 1 1.3 0.6 0.98

Tb 7.7 8.7 5.1

ETS 54.2 93.3 41.6

T100 (DAS)

MW 18.3 22.8 13.6

FW 1 1.3 0.5 0.96

T100 - T1 (days)

MW 8.1 11.4 4.8

FW 1 1.8 0.2 0.77

DAS days after sowing

Table 3 Covariance analysis for final emergence percentage (FEP),

emergence rate (ER), onset (T1) and end (T100) of emergence, the

median of emergence time (T50) and uniformity (T100 - T1)

Covariance analysis

df Sum of squares Mean squares p

FEP

gen 193 85,754 444 \0.0001

env 1 470,152 470,152 \0.0001

gen*env 193 52,165 270 \0.0001

ER

gen 193 14,514 75 \0.0001

env 1 212,626 212,626 \0.0001

gen 9 env 193 47,954 248 \0.0001

T1

gen 193 573 3 \0.0001

env 1 52,035 52,035 \0.0001

gen 9 env 193 2,122 11 \0.0001

T50

gen 193 503 3 \0.0001

env 1 99,248 99,248 \0.0001

gen 9 env 193 1,926 10 \0.0001

T100

gen 193 1,063 6 0.0419

env 1 157,010 157,010 \0.0001

gen 9 env 193 3,031 16 \0.0001

T100 - T1

gen 193 1,459.2 7.6 0.0136

env 1 29,162.1 29,162.1 \0.0001

gen 9 env 193 2,754.0 14.3 \0.0001

df degree of freedom, gen genotype effect, env environment effect,

gen 9 env interaction of genotype and environment
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FW among genotypes was observed for ER. ER(FW) ranged

from 0.3 to 2.4. Average R2 for FW ranged between 0.77

for T100 - T1 and 0.98 for T50 (Table 2). A low Tb in

combination with a short ETS indicates a desirable geno-

type Fig. 2h.

Correlations between mean genotype performance and

FW were significant for T1, T50 and T100 (ESM_Table 1)

while correlation between FEP(M) and FEP(FW) was sta-

tistically not significant. Tb was significantly correlated to

T50(FW) (0.54 p \ 0.001) and ETS (-0.78, p \ 0.001) while

correlations between T50(FW) and ETS were statistically not

significant.

Maximum value of dK occurred at K = 2. Accordingly,

each of the 194 lines was assigned to one of the K = 2

groups, 54 lines (28 %) belong to group 1 while the

remaining 140 lines (72 %) belong to group 2 (Fig. 3a).

Most genotypes of group 1 are members of the S. bicolor

sudanense clusters of Fig. 3b. These are the clusters from

genotype 9 to 189 at the bottom and from genotype 117 to

28 on the right hand.

LD in relation to the genetic distance of marker pairs on

the same chromosome is shown for the whole population

(Fig. 4b) and for the two subpopulations group 1 and 2

(Fig. 4c, d). LD of marker pairs from different chromo-

somes is illustrated by box and whisker plots. For the

whole population, significant LD (p \ 0.05) was observed

for 723 marker pairs (50.6 %) located on the same chro-

mosome. Mean R2 for all intrachromosomal marker pairs

was 0.08. Group 2 showed less marker pairs (19.5 %)

significantly in LD compared to group 1 (28.5 %). Mean R2

for all intrachromosomal marker pairs of group 1 was 0.08

(1,427 marker pairs) and 0.05 in group 2 (1,222 marker

pairs). The critical R2 value was 0.53 for the whole pop-

ulation and 0.54 and 0.40 for group 1 and 2, respectively.

Beyond this value, LD was likely to be caused by genetic

linkage. Mean distance of marker pairs showing an LD

beyond this threshold was 13.2 cM in the whole population

while in the groups mean distance was 30 cM (group 2)

and 24.4 cM (group 1). The LOESS curve did not cross the

critical R2 baseline in all cases, which gives hint that LD

decayed fast. Another indicator for fast LD decay is that

mean R2 fell constantly below 0.15 if the distance was

larger than 8 cM (Fig. 4a).

A comparison of both methods, GLM without permu-

tation test and MLM using the rank sum method according

to Stich et al. (2008) shows that mean squared difference

(MSD) between observed and expected p-values of GLM

are for all traits higher than MSD of MLM (Table 6).

Table 6 shows the number of significant marker–trait

associations identified with GLM after carrying out the

permutation test and MLM. A total of 102 marker–trait

associations was congruently detected by both models

while 174 loci were significantly associated to one of the

analyzed traits using MLM and 196 loci using GLM. The

highest number of significant marker–trait associations was

detected for ETS and T1(M). Application of GLM revealed

39 marker–trait associations for ETS while 14 marker–trait

associations were detected using MLM. Only 11 of the loci

turned out to be significant in both models. Only 3 loci

were significant applying both models on T100 - T1(M)

data.

ESM_Table 2 shows marker–trait associations that were

significant using both GLM and MLM models. Means and

standard deviations for the trait values of the two groups of

marker genotypes are shown. The common allele is defined

as the predominant allele. Pairwise t tests comparing the

rare and common allele revealed that 17 marker–trait

associations significant in both models, GLM and MLM,

were not significant. E.g., all the traits T1(M), T1(FW)

and T50(M) were associated to marker loci sPb-6748 and

sPb-3298 on chromosome SBI-09 according to GLM and

MLM but the t test showed no significance between trait

values of the marker-genotype groups.

If marker–trait associations not significant according

to the t test are excluded, a total of 85 marker–trait

Table 4 Variance components and heritability of final emergence

percentage (FEP), emergence rate (ER), onset (T1) and end (T100) of

emergence, the median of emergence time (T50) and uniformity

(T100 - T1)

Variance components Heritability

r2
G r2

G�E
r2 h2

FEP 119.7 19.2 78.4 0.92

ER 7.9 1.1 46.4 0.60

T1 6.0 4.2 4.9 0.86

T50 5.6 8.0 6.5 0.78

T100 7.4 12.7 12.2 0.73

T100 - T1 3.8 2.2 8.5 0.76

r2
E, r2

G, r2
G�E and r2 are variances of the environment, genotype,

genotype 9 environment interactions and error variances

***,**,* significant at the 0.001, 0.01 and 0.05 probability level

Table 5 Analysis of variance (ANOVA) for final emergence per-

centage under cold (FEPcold) and normal (FEPnormal) conditions

Variance analysis

df Sum of squares Mean squares p

gen 193 106,821 553 \0.0001

temp 1 229,320 229,320 \0.0001

gen 9 temp 193 20,724 107 0.07

block 1 10,675 10,675 \0.0001

df degree of freedom, gen genotype effect, temp temperature effect,

gen 9 temp interaction of genotype and temperature

1652 Theor Appl Genet (2012) 125:1647–1661

123



Fig. 2 Final emergence

percentage under cold (FEPcold)

and normal (FEPnormal)

conditions (a), Finlay–

Wilkinson regression for

calculating Finlay–Wilkinson

slope (FW) and across

environment mean (M) for FEP

(b), onset (T1) (c), median time

to emergence (T50) (d), end of

emergence (T100) (e),

uniformity (T100 - T1) (f) and

emergence rate (ER) (g) in nine

environments and the

relationship between

development rates and mean air

temperatures for calculating

base temperature (Tb) and

thermal time for emergence

(ETS) (h). ETS is the inverse of

regression slope (sl). Filled
symbols indicate the genotype

with highest FEP (a, b) or

emergence rate (g) and

development rates of T50 (h) or

the shortest duration of T1 (c),

T50 (d), T100 (e) and uniformity

(f), respectively. Open symbols
represent the worst performing

genotype. Selection was done

for each trait separately while

selection criterion for Tb and

ETS was T50
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Fig. 3 Population structure

(a) and neighbor-joining

dendrogram (b) of the diversity

set. The population structure

shows two distinct groups:

Group 1 is represented by grey
boxes (a) or a grey ellipse
(b) and group 2 is represented

by white boxes
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associations remain for 16 traits (Fig. 5). Out of them, 24

markers were associated with only one trait and 20 markers

were associated with between two and six traits. A total of

42 temperature response QTL, marker–trait associations

for FW, Tb and ETS, were found while 14 of them were

detected on chromosome SBI-08. Some marker–traits

associations were detected for genotype mean and FW at

the same position, e.g. for T100 - T1 on chromosome

SBI-01, T1 on chromosomes SBI-03, SBI-06 and SBI-09,

T50 on chromosomes SBI-03, SBI-04 and SBI-09 and T100

on chromosomes SBI-04, SBI-08 and SBI-09. Marker–trait

associations for FEP(M) and FEP(FW) did not co-localize.

Four marker–trait associations for FEP(M) were located on

chromosome SBI-01 between 25 and 66 cM. Marker–trait

associations for FEP(FW) were found on SBI-03, SBI-04,

SBI-05, SBI-08, SBI-09 and SBI-10. Co-localization of

marker–trait associations for FEPcold and FEP(M) was

detected on chromosome SBI-01 and SBI-03 while marker–

trait associations for FEPnormal did not co-localize with

FEPcold, FEP(M) or FEP(FW). Marker-trait associations

for Tb and T50(FW) were co-located on chromosome SBI-01

and SBI-08, while ETS and ER(FW) were associated

with sPb-0258, sPb-1661 and sPb-1881 on chromosome

SBI-08.

A positive effect of the rare allele on across environment

means (reducing T1, T100 and T100 - T1 and increasing

FEP and ER) was observed for 21 markers. The rare allele

of sPb-7795 on chromosome SBI-03 increased FEP(M)

while the rare allele of sPb-7290 on chromosome SBI-06

caused an earlier T1(M). Reducing T100 - T1(M) was

associated with the rare alleles of sPb-3801, sPb-4081 and

sPb-9894 on SBI-01, SBI-02 and SBI-03 while sPb-4081

and sPb-1925 on chromosome SBI-02 increased ER(M).

Discussion

Statistical models and crop models for QTL detection

The objective of the present study was to identify marker–

trait associations for sorghum emergence under a broad

range of temperature regimes. Sorghum cultivation in

temperate climates requires the development of genotypes

with high FEP under both low and optimum temperature

Fig. 4 Mean R2 values for

different centimorgan (cM)

classes (a). Linkage

disequilibrium parameter R2

plotted against the genetic

distance in cM for the whole

population (b), group 1

(54 genotypes) (c) and group 2

(140 genotypes) (d). The bottom
black line shows the second-

degree LOESS curve. Box plots
show the distribution of R2

derived from pairwise LD of

unlinked loci, dotted lines
indicate the median and straight

lines represent the mean.

Boxes show the 25 and 75 %

percentile, whiskers the 95 and

5 % percentile. The critical R2

is given by horizontal black
lines
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conditions, such ideotypes should emerge uniformly and

shortly after sowing. The latter makes it necessary to

understand emergence as a process, which is described best

by CEP, allowing a precise estimation of T1, T100, T50, ER

and T100 - T1. Using piecewise linear regressions allowed

us to describe the variability of the emergence process of

194 sorghum genotypes grown in nine temperature

regimes, while it was not possible to generate model

parameters for all genotypes in any environment if the

Weibull function was applied (data not shown). Generally,

Weibull is highly recommended for describing germination

and emergence data (Brown and Mayer 1988b). However,

simplicity and flexibility as well as independence and

biological interpretability of all parameters (Vieth et al.

1989) make piecewise linear regressions the model of

choice, enabling the direct comparison of largely

contrasting genotypes cultivated under a broad range of

environmental conditions (Trudgill et al. 2000).

For marker-assisted selection it is necessary to identify

QTLs that are stable across environments (Burow et al.

2011). Under situations of environmental stress, repro-

ducibility of phenotypic data and QTL detection are low.

Traits that are highly influenced by environmental factors

can by definition not produce the same results in different

environments. A challenge is to carry out QTL analysis

directly on parameters of the response curves of a trait to its

influencing factors, thus, genetic dissection of adaptation

processes is done best by using mathematical functions

(e.g., growth functions) for QTL detection (Reymond et al.

2003). Stability parameters are good statistical estimators

for such a situation and they have already been used to

distinguish between QTL for the trait itself and for GEI

effects (Kraakman et al. 2004; Lacaze et al. 2009).

In contrast to stability parameters, Tb and ETS are

broadly used crop-modeling parameters and theoretically

can be used for predicting mean emergence time of any

genotype in different environments. Predicting the perfor-

mance of different genotypes in different environments is a

major goal for combining crop-modeling approaches with

quantitative genetic analyses. However, the use of stability

parameters has several advantages. Detailed environmental

and climatic data is lacking in many state of the art

breeding trials. Multi-environment trials with many factors,

which cannot be controlled completely (e.g., temperature,

soil type and structure, rainfall), are commonly used to

carry out stability analyses. The linear regression model for

estimating Tb and ETS works since 1/T50 data of all geno-

types is within the linear increase of emergence time in

relation to temperature for the sampled environments. This

does not hold true for all traits. Functions that fit the

temperature response of FEP of individual genotypes used

in the present study would include exponential, linear, and

monomolecular ones since not all temperatures from the

minimum to the optimum for the individuals were sampled.

As parameters of different functions (e.g., exponential and

monomolecular) cannot be used simultaneously for QTL

detection, stability parameters, which have the disadvan-

tage not to represent real physiological responses to the

environment, are an adequate compromise in many situa-

tions (El Soda et al. 2010). Stability analyses applied on

data from controlled environments, e.g., varying only in

temperature, are not common but have the main advantage

that different reactions of genotypes can be traced back to a

single influencing factor. In conclusion, QTL for FW in our

study are truly temperature response QTL, which neither

interacted with nor were affected by other environmental

variables.

In our study, 11 of 32 marker–trait associations for FW

co-locate with genotype mean performance QTL of the

analogous trait. The only trait with no co-localization of

FW and genotype mean performance was FEP. According

Table 6 Mean squared difference (MSD) of generalized linear model

(GLM) without permutation test and a mixed linear model (MLM)

data, number of significant marker–trait associations using GLM with

permutation test and MLM and number of significant marker–trait

associations using both models

MSD Number of marker–trait associations

GLM MLM GLM MLM GLM and MLM

FEP

Cold 0.069 0.156 7 12 5

Normal 0.021 0.003 8 14 8

MW 0.019 0.006 7 9 6

FW 0.663 0.002 18 12 8

ER

MW 0.018 0.0006 7 9 6

FW 0.312 0.001 9 9 6

T1

MW 0.402 0.0002 12 13 9

FW 0.139 0.031 8 11 7

T50

MW 0.688 0.003 11 12 7

FW 0.288 0.001 9 10 6

Tb 0.744 0.001 35 10 4

ETS 0.513 0.002 39 14 11

T100

MW 0.351 0.182 10 14 6

FW 0.193 0.003 7 10 5

T100 - T1

MW 0.008 0.001 3 7 3

FW 0.009 0.001 5 8 5

FEP final emergence percentage, ER emergence rate, T1 onset of

emergence, T50 median time to emergence, T100 end of emergence,

T100 - T1 uniformity, FW Finlay–Wilkinson slope, MW mean across

environments, cold FEP under cold conditions, normal FEP under

normal conditions, Tb base temperature, ETS thermal time
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to Kraakman et al. (2004) the co-localization of QTL for

mean trait performance and stability parameters is an

indicator for genotypic differences in the allelic sensitivity,

while QTL for stability parameters which are far from any

QTL for the trait itself, suggest a gene regulatory network

in which adaptive genes switch on or off the constitutive

genes influenced by the environment. In the present study,

there is always a strong positive correlation between FW

and mean genotype performance of T1, T50, and T100, since

all genotypes emerge relatively fast under favorable con-

ditions, while those with a low cold tolerance, emerge late

at low temperatures. The same relation holds also true for

T100 - T1 but not for FEP. The absence of co-localization

of FW and mean genotype performance QTL for FEP

suggests a gene regulatory network but another reason

could be that FEP is influenced by seed quality. Negative

effects on seed quality may result from some extremely late

flowering genotypes, i.e., seeds may not have reached

maturity at harvest time and immature seeds have a

reduced FEP (Shepard et al. 1996). In contrast to FEP, time

of emergence includes only those seeds, which do emerge,

and FEP QTL may also include QTL for flowering time. A

common approach to separate seed quality QTL from QTL

for cold tolerance is to use relative values (FEP at low

temperatures over FEP at normal temperatures). The use of

FW can be seen as a different approach to correct FEP data

for differences in seed quality. A small slope indicates that

FEP is not or only slightly affected by temperature

Fig. 5 Marker–trait associations for final emergence percentage

(FEP) under cold (checkered square) and normal (striped square)

conditions and for genotype mean (filled symbols) and Finlay–

Wilkinson slope (unfilled symbols) of FEP (square), onset (hexagon)

and end (diamond) of emergence, uniformity (right angled triangle),

emergence rate (circle) and the median of emergence time (upright
triangle) and marker–trait associations for base temperatures (star)

and thermal time of T50 (sigma)
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regardless of FEP at higher temperatures, i.e., cold tolerant

genotypes have a small FEP(FW) value.

Genome regions affecting the germination process

Results of the present study confirm earlier QTL studies

and show that most promising regions for emergence and

cold tolerance during emergence are located on SBI-01

(Knoll et al. 2008; Burow et al. 2011). Burow et al. (2011)

found QTL for early emergence close to Xtxp350 in the

same region of a QTL for FEP(M) and FEPnormal at DArT

markers sPb-3891 and sPb-2583, respectively (Fig. 6).

Knoll et al. (2008) described QTL for early field emer-

gence flanked by SSR markers OPA19 and umc83. The

latter was mapped close to sPb-8947 (Mace et al. 2008),

which is associated with FEP(M) in the present study.

Another interesting region is between Xtxp043 and

Xtxp032, where sPb-0090 was mapped according to Mace

et al. (2008). sPb-0090 is associated with FEP(M) and

Xtxp043 is a flanking marker of a QTL detected by Burow

et al. (2011). High-resolution SNP maps allowing regional

association studies are needed to identify candidate genes

within these important QTL regions.

The rare allele of sPb-3801 on SBI-01 reduces

T100 - T1(M) and T100 - T1(FW) and thus homogenizes the

emergence process. Improving emergence percentage and

uniformity leads to a better canopy establishment resulting

in higher and more stable yields (Cisse and Ejeta 2003).

However, low seedling vigor and a prolonged juvenile

development at low temperatures may lead to a delayed

canopy closure and yield reduction despite high FEPs and

uniformly emerging seeds. Thus, improving cold tolerance

of a crop is not simply done by improving seed emergence.

QTL for early vigor and field emergence were identified

between Xtxp043 and Xtxp032 by Knoll et al. (2008). QTL

regions affecting emergence and seedling vigor at the same

time in the same direction may be the most promising ones

for improving the cold tolerance of a crop.

The QTL for Tb on SBI-01 is difficult to interpret since

the marker allele, which decreases Tb, increases ETS. The

parameters are negatively correlated and both Tb and ETS

depend on the regression slope bi (Eq. 6) of the rates of

development of T50 regressed against temperatures. If a

marker allele has an effect on ETS and the intersection

between the regression lines of the negative and the posi-

tive allele is [0, the increase in ETS leads to a decreasing

Tb and vice versa. Selection for Tb makes only sense if ETS

is not significantly affected (Fig. 2h) or positively affected

(intersection \ 0) at the same time.

Knoll et al. (2008) detected a QTL for germination at

high (30 �C) and low (13 �C) temperatures on SBI-03. The

QTL region is not the same as that one we identified on

SBI-03 for FEP. Flanking markers of the earlier identified

QTL mapped according to Mace et al. (2008) in the large

gap our map shows on SBI-03. Anyway, the region

between 4 and 5 cM on SBI-03 is a promising QTL region.

The rare allele of sPb-7795 is associated with a positive

effect on FEP(M) and FEPcold and the rare allele of the very

close marker sPb-5454 decreases FEP(FW), i.e., improves

cold tolerance. Srinivas et al. (2009) detected QTL for

maturity close to sPb-7795 on SBI-03 (Mace and Jordan

2011), which may support the hypothesis that maturity

affects seed quality.

Zhang et al. (2005) detected in a rice RIL population

two QTL for germination under low temperature on chro-

mosomes 3 and 8. Rice chromosomes 3 and 8 are widely

homologous to SBI-01 and SBI-07 according to Ventelon

et al. (2001) and following the nomenclature of Kim et al.

(2005). A major QTL for germination at optimal temper-

atures was found on rice chromosome 2 in a F2 population

(Li et al. 2011), chromosome 2 is globally homologous to

SBI-04 (Ventelon et al. 2001). We found marker–trait

associations for FEP(M) on SBI-01, SBI-03 and SBI-09 and

for FEP(FW) on SBI-04. The rare allele of sPb-4851

decreases FEP(FW) and Tb. Probably a reduction of Tb leads

to less reductions of FEP under low temperatures.

QTL for maize germination percentage under low tem-

perature conditions were identified on maize chromosome

4 (Hund et al. 2004). Liu et al. (2011) found QTL for maize

germination percentage related to seed vigor on chromo-

somes 4, 7 and 10. We detected a QTL for FEP(FW) on

Fig. 6 Alignment of the genetic map of chromosome SBI-01 from

Burow et al. (2011) (a), the present study (b) and Knoll et al. (2008)

(c). Underlined and italic markers represent flanking markers of QTL

for early field emergence or germination at 30 �C (a) and early vigor,

early and late emergence (b). Symbols indicate final emergence

percentage of over all environments (filled square), under cold

(checkered square) and normal conditions (striped square)
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SBI-04 but no QTL for FEP(M), FEPnormal, or FEPcold on

SBI-04 and SBI-05, which contain homologous regions of

maize chromosome 4 (Whitkus et al. 1992) and for

FEP(FW) on SBI-08 carrying homologous regions of maize

chromosome 10. Another promising region on SBI-08

between 73 and 111 cM carries no FEP QTL but three

marker–trait associations with a positive effect of the rare

allele on ER(FW), ETS, one QTL for Tb, and several QTL for

traits related to emergence time. Limami et al. (2002)

found QTL for T50 on maize chromosome 2, which is

homologous to regions of SBI-02 and SBI-06 (Whitkus

et al. 1992) and on maize chromosome 4, which is

homologous to regions on SBI-04 and SBI-05 (Whitkus

et al. 1992). Our results show marker–trait associations for

T50(M) and/or T50(FW) on SBI-04 and SBI-06. Possibly the

same genes regulate cold tolerance during emergence of

maize, sorghum and rice. In addition, the identification of

candidate genes is required to provide more detailed

information about the genetic background.

Power and reliability of QTL detection

LD of the present sorghum population decayed within

8 cM, while average marker distance was 8.7 cM and the

largest gap between markers was 66 cM. Large gaps in

combination with fast LD decay make it impossible to

screen the whole genome for significant marker–trait

associations. However, mean LD values are useful but give

no information about its local extent since high variation of

LD among the genome occurs (Sorkheh et al. 2008) and LD

varies also between groups of a population. We observed a

higher mean R2 and critical R2 threshold for group 1 than for

group 2. One reason could be the different population size

of the groups but also differences in the number of poly-

morphic markers in the groups. Mean R2 of the whole

population was higher compared to values obtained by

Bhosale et al. (2011) and Hamblin et al. (2004). Both

studies included wild sorghum accessions. Wild sorghums

have higher outcrossing rates than cultivated ones and high

outcrossing rates decrease the extent of LD.

Different strategies like integrating the population

structure (Pritchard et al. 2000) and familial relatedness

(Yu et al. 2006) have been used to reduce false positive

marker–trait associations. Kinship coefficients are used to

correct association studies for familial relatedness and

show the probability that homologous loci are identical by

descent. The MLM approach takes both population struc-

ture and kinship matrix into account while GLM as

implemented in TASSEL 2.01 uses only the population

structure (Casa et al. 2008; Shehzad et al. 2009). Our

results show that type I error rates of GLM are higher than

those of MLM, which is in accordance with Neumann et al.

(2010). Neumann et al. (2010) concluded that some

associations can only be detected by GLM but, since GLM

may result in many false positive marker–trait associations,

both approaches GLM and MLM should be used together.

We observed that controlling GLM type I error rates with

a permutation test (Churchill and Doerge 1994) reduces the

number of detected marker–trait associations to a similar

level as MLM. However, approximately 50 % of the iden-

tified loci were shared by applying both methods and a

subsequently carried out t test revealed that 16 of the shared

marker–trait associations were not significant. In conclu-

sion, even taking the population structure and/or familial

relatedness into account both GLM and MLM may result in

spurious marker–trait associations and comparing the

results of different models may presently be the most useful

way for detecting reliable associations (Shezad et al. 2009).

Conclusions

In accordance with previous studies, we conclude from the

present work that one of the most promising regions for

improving FEP is located on SBI-01. However, the time-

point at which emergence occurs as well as across environ-

ment stability of FEP is likely be regulated by distinct QTL

regions. Piecewise linear regressions gave a good estimate of

the emergence process of different genotypes. However, the

emergence model in combination with stability analysis was

able to precisely describe the emergence process across

different temperature regimes. This combination enabled the

detection of QTL for GEI effects. An interesting alternative

approach is to use physiologically more meaningful

parameters like Tb and ETS as input traits for QTL detection.

A shift in Tb without negatively affecting development

processes is the most promising avenue to adapt crops to new

cultivation areas with lower temperatures. However, the

identification of stable markers and candidate genes for

sorghum cold tolerance during emergence requires the

development of high-density genetic maps.
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